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Abstract. The O(α) electroweak radiative corrections to γγ → WW → 4f within the electroweak standard
model are calculated in double-pole approximation (DPA). Virtual corrections are treated in DPA, leading
to a classification into factorizable and non-factorizable contributions, and real-photonic corrections are
based on complete lowest-order matrix elements for γγ → 4f+γ. Soft and collinear singularities appearing
in the virtual and real corrections are combined alternatively in two different ways, namely by using the
dipole subtraction method or by applying phase-space slicing. The radiative corrections are implemented
in a Monte Carlo generator called Coffer γγ – the computer code can be obtained from the authors upon
request – which optionally includes anomalous triple and quartic gauge-boson couplings in addition and
performs a convolution over realistic spectra of the photon beams. A detailed survey of numerical results
comprises O(α) corrections to integrated cross sections as well as to angular, energy, and invariant-mass
distributions. Particular attention is paid to the issue of collinear safety in the observables.

1 Introduction

As an option at a future e+e− linear collider, a photon (or
γγ) collider [1] has aroused considerable interest in recent
years. It could provide us with information about new
physics phenomena, such as properties of Higgs bosons or
of new particles, which is in many respects complementary
in the e+e− and γγ modes (see, e.g., [1, 2] and references
therein). Moreover, a γγ collider is a true W -boson-pair
factory, owing to the extremely high W -pair cross section,
which tends to a constant of about 80 pb in the high-energy
limit (in the absence of phase-space cuts), opening the
possibility of precision studies in the sector of electroweak
gauge bosons. Either way, whether one is interested in W -
boson precision physics or in the search for new phenomena,
precise predictions for W -pair production are indispensable
for signal and background studies.

In our previous work [3] we have made the first step
towards a precision calculation for the processes γγ →
WW → 4f(+γ) by constructing a Monte Carlo event gen-
erator for lowest-order predictions based on complete ma-
trix elements for the processes γγ → 4f and γγ → 4fγ.
The possibility to convolute the cross sections with realistic
photon beam spectra is offered upon using the parametriza-
tion of CompAZ [4]. The standard model (SM) predictions
were successfully compared to results obtained with the
multi-purpose packages Whizard [5] and Madgraph [6].
Moreover, we included an effective γγH coupling, which
is induced by loop diagrams, as well as anomalous triple
and quartic gauge-boson couplings. The former is needed

for studying Higgs production in the s-channel. An anal-
ysis of anomalous gauge-boson couplings in γγ → WW
provides direct information on the γWW and γγWW in-
teractions without interference from the Z-boson sector.
Both the Higgs resonance in the s-channel and the more
direct access to the γWW and γγWW interactions are
complementary to the situation in e+e− annihilation.

In this paper we extend our lowest-order calculation [3]
for γγ → 4f by including the electroweak radiative cor-
rections of O(α) to the W -pair channels γγ → WW → 4f
in the so-called “double-pole approximation” (DPA). The
DPA extracts those contributions of the O(α) corrections
that are enhanced by two resonant W -boson propaga-
tors, i.e. it represents the leading term in an expansion
of the cross section about the two W -propagator poles.
Note that tree-level diagrams for γγ → 4f with at most
one resonant W boson are suppressed with respect to
the doubly-resonant γγ → WW signal by a factor of
O(ΓW /MW ) ∼ O(α). Consequently, predictions based on
full lowest-order matrix elements for γγ → 4f and O(α)
corrections for γγ → WW → 4f in DPA should be precise
up to terms of O(α/π × ΓW /MW ), since corrections typi-
cally involve the factor α/π. Including a quite conservative
numerical safety factor, the relative uncertainty should thus
be � 0.5% for such predictions, as long as neglected effects
are not additionally enhanced. The naive error estimate
can, in particular, be spoiled by the occurrence of large
scale ratios, which exist, e.g., near production thresholds
or at very high energies. The estimate has recently been
confirmed for e+e− → WW → 4f with center-of-mass
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(CM) energies 170 GeV � √
s � 300 GeV by comparing

a full O(α) calculation [7, 8] with the corresponding DPA
predictions provided by RacoonWW [9,10].

In detail, we apply the DPA only to the virtual correc-
tions to γγ → WW → 4f , while we base the real-photonic
corrections on complete lowest-order matrix elements for
γγ → 4fγ. Apart from the treatment of IR (soft and
collinear) singularities, we can use the calculation of the
bremsstrahlung processes γγ → 4fγ for massless fermions
described in [3]. The concept of the DPA was already de-
scribed in [11] for the corrections to e+e− → WW → 4f
and later successfully applied to these processes in dif-
ferent versions [9, 10, 12–14]. We follow the strategy of
RacoonWW [9,10] and adapt it to γγ collisions where nec-
essary.The virtual corrections inDPAcanbe naturally split
into factorizable and non-factorizable contributions. The
former comprise the corrections to on-shell W -pair produc-
tion [15–17]1 and the decay [19] of on-shell W bosons. The
latter account for soft-photon exchange between the pro-
duction and decay subprocesses; the known results for the
non-factorizable corrections [20,21] for e+e− → WW → 4f
can be taken over to γγ collisions with minor modifica-
tions. Although the basic building blocks for the virtual
corrections exist in the literature, the combination into a
complete set of O(α) corrections in DPA has not been done
yet for γγ → WW → 4f .

The combination of virtual and real-photonic correc-
tions is non-trivial for two reasons. First, the finite-fermion-
mass effects have to be restored in the phase-space regions
of collinear photon radiation off charged fermions, and the
IR regularization for soft-photon emission has to be im-
plemented. To this end, we employ the dipole subtraction
formalism for photon radiation [22,23] as well as the more
conventional phase-space slicing approach. The second sub-
tlety concerns the fact that we apply the DPA only to
the virtual corrections, but not to the real-photonic parts.
Therefore, the cancellation of soft and collinear singulari-
ties has to be done carefully, in order to avoid mismatch.

This paper is organized as follows. After a brief outline
of our strategy in the next section, in Sect. 3 we describe
the actual calculation of the virtual corrections in DPA.
Apart from the general concept, we give some details on an
efficient way for a numerically stable evaluation, on renor-
malization issues, on the treatment of the s-channel Higgs
resonance, and on an improved Born approximation used
in the threshold region of W -pair production. Section 4
deals with the combination of virtual and real-photonic
corrections; all relevant details for the application of dipole
subtraction and phase-space slicing to the considered pro-
cesses can be found there. Moreover, the differences in the
evaluation of collinear-safe and non-collinear-safe observ-
ables are described. Our discussion of numerical results is
presented in Sect. 5; besides integrated cross sections, we
also discuss angular, energy, and invariant-mass distribu-
tions. A summary is given in Sect. 6, and the appendices
provide further details on the evaluation of coefficient func-
tions for the factorizable virtual corrections as well as on

1 Radiative corrections to on-shell W -pair production, γγ →
WW , were also considered in [18].

the generalization of the dipole subtraction method for
non-collinear-safe observables.

2 Strategy of the calculation

We consider the process

γ(k1, λ1) + γ(k2, λ2)

→ W+(k+, λ+) + W−(k−, λ−) (2.1)

→ f1(p1, σ1) + f̄2(p2, σ2) + f3(p3, σ3) + f̄4(p4, σ4),

where ki and pi denote the momenta and λi and σi the
helicities of the corresponding particles.

The lowest-order cross section dσγγ→4f
Born , based on the

complete matrix elements Mγγ→4f
Born with massless fermions,

has been discussed in detail in [3]. Suppressing the averag-
ing over the photon polarizations and the spin and color
summation for the final state in the notation, it reads∫

dσγγ→4f
Born =

1
2s

∫
dΦ4f |Mγγ→4f

Born |2, (2.2)

with

s = (k1 + k2)2, sij = (pi + pj)2, i, j = 1, 2, 3, 4. (2.3)

The variables sij are introduced for later use.
In the following we focus on the radiative corrections

of O(α) which consist of virtual corrections dσγγ→4f
virt to

the process (2.1) and real-photonic corrections dσγγ→4fγ ,
originating from the process

γ(k1, λ1) + γ(k2, λ2)

→ W+(k+, λ+) + W−(k−, λ−) (+γ )

→ f1(p1, σ1) + f̄2(p2, σ2) + f3(p3, σ3)

+f̄4(p4, σ4) + γ(k, λγ). (2.4)

Combining the different contributions we obtain the O(α)-
corrected prediction for the cross section,∫

dσ =
∫

dσγγ→4f
Born +

∫
dσγγ→4f

virt +
∫

dσγγ→4fγ . (2.5)

The real-photonic corrections dσγγ→4fγ are based on the
full lowest-order matrix elements Mγγ→4fγ

Born of the pro-
cess γγ → 4fγ, which were calculated in [3] for massless
fermions. In the limit of vanishing photon momentum k
(soft limit) or when the photon becomes collinear to an
external charged fermion (collinear limit), the cross section
diverges. Considering the process γγ → 4fγ with a visible
photon (which is neither soft nor collinear), these singulari-
ties are removed by imposing appropriate phase-space cuts
which are justified by the finite experimental resolution.
For predictions of the γγ → 4f(γ) processes, i.e. with or
without photon radiation, the singular phase-space regions
of soft or collinear emission have to be integrated over. In
this case the real corrections are combined with the virtual



A. Bredenstein et al.: Four-fermion production at γγ colliders: 2. Radiative corrections in double-pole approximation 29

corrections which contain exactly the same singularities
with opposite sign. The regularization of the singularities
in the real corrections by small photon and fermion masses,
λ and mf , as well as the matching with the singularities
in the virtual corrections, is described in detail in Sect. 4.
The starting point is a separation into a finite and a sin-
gular part,

dσγγ→4fγ = dσγγ→4fγ
finite + dσγγ→4fγ

sing , (2.6)

where the soft and collinear singularities appear in
dσγγ→4fγ

sing as ln λ and lnmf terms, respectively.
The virtual corrections to the process (2.1) are calcu-

lated in the DPA, which is explained in Sect. 3. Since the
real corrections are based on complete γγ → 4fγ matrix
elements (i.e. they are not calculated in DPA), the cancel-
lation of soft and collinear singularities in (2.5) requires
particular care. To this end, we apply the DPA only to the
finite part of the virtual corrections,

dσγγ→4f
virt → dσγγ→WW→4f

virt,finite,DPA + dσγγ→4f
virt,sing. (2.7)

Technically this is achieved by subtracting the singular part
in DPA from the DPA virtual corrections and adding the
exact singular part dσγγ→4f

virt,sing. Of course, this procedure in-
volves some freedom, because finite terms can be shifted be-
tween dσγγ→4f

virt,finite,DPA and dσγγ→4f
virt,sing. This arbitrariness is,

however, of the order of the uncertainty O(αΓW /(πMW ))
of our calculation. In the e+e− case this has been checked
numerically in [10].

Inserting these rearrangements into (2.5) we obtain∫
dσ =

∫
dσγγ→4f

Born +
∫

dσγγ→WW→4f
virt,finite,DPA

+
∫

dσγγ→4f
virt+real,sing +

∫
dσγγ→4fγ

finite , (2.8)

where
∫

dσγγ→4f
virt+real,sing =

∫
dσγγ→4f

virt,sing +
∫

dσγγ→4fγ
real,sing does

not contain any dependence on the photon mass anymore.
Collinear singularities, appearing as lnmf terms, also can-
cel if the observable is sufficiently inclusive. Such collinear-
safe observables result if photons within cones collinear to
any outgoing charged fermion are treated inclusively, i.e. if
they are not separated from the nearly collinear fermion by
any phase-space or event selection cuts. For non-collinear-
safe observables logarithms of the fermion masses remain
in the final result. This case demands a special treatment
of the singular terms. We elaborate more on this issue
in Sect. 4.2.

The radiative corrections are implemented in a Monte
Carlo generator called Coffer γγ, which is based on the
lowest-order calculationdescribed in [3].We emphasize that
we have actually constructed two independent Monte Carlo
programs, each of which employs independent routines for
the matrix elements (with and without corrections), for the
subtraction procedure, and for the phase-space integration.
The numerical results obtained with the two programs are
in mutual agreement within statistical uncertainties.

3 Virtual corrections

3.1 Concept of the double-pole approximation

In the DPA the matrix element for γγ → 4f is expanded
around the poles of the two resonant W propagators. The
leading term of this expansion receives contributions from
so-called factorizable and non-factorizable corrections. For
the details of this classification, especially how a gauge-
invariant decomposition is obtained, we refer to [10,11,20,
21].

The generic Feynman diagram for the factorizable cor-
rections is shown in Fig. 1. It factorizes into the on-shell
W -pair production, the off-shell W -boson propagators, and
the subsequent on-shell W decays. The corrections can be
attributed to either of these subprocesses. When integrat-
ing over the full 4f phase space, the W bosons usually
are not on shell. However, a gauge-independent evaluation
of the matrix elements for production and decay requires
on-shell momenta for the W bosons. Therefore, we have
to perform an on-shell projection, i.e. the momenta of the
fermions are deformed in such a way that the W bosons be-
come on shell. The deformation involves a certain freedom
and introduces an error of O(αΓW /(πMW )). We define the
on-shell projection by fixing the directions of the W+ boson
and of the fermions f1 and f3. The explicit formulas can be
found in Appendix A of [10]. For later use, we label the new
momenta k̂± and p̂i and define the kinematic invariants

t̂ = (k1−k̂+)2 = (k1−p̂1−p̂2)2, û = 2M2
W −s− t̂. (3.1)

Apart from the factorizable corrections there are addi-
tional doubly-resonant contributions. In the corresponding
diagrams subprocesses are linked by a photon. These di-
agrams become doubly resonant in the limit of vanishing
photon momentum, as can be seen from the soft-photon
approximation in which the correction is proportional to
the lowest-order cross section.The relative correction factor
for these so-called non-factorizable corrections is, thus, not
dependent of the actual production mechanism of the W -
pairs, but only on the electric charges and kinematics of the
external particles of the process. The non-factorizable cor-
rections were calculated in [20,21] for e+e− → WW → 4f .
We can transfer the results for the e+e− case by simply
omitting all contributions in which the exchanged pho-
ton is linked to an e± from the initial state. The different
types of relevant diagrams are depicted in Fig. 2. The first
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Fig. 1. Generic Feynman diagram of the virtual factorizable
corrections to γγ → WW → 4f . The shaded blobs stand for
loop corrections to the production and decay processes
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Fig. 2a–e. A representative set
of diagrams contributing to the
virtual non-factorizable correc-
tions. The shaded blobs stand for
all tree-level structures contribut-
ing to γγ → WW

two diagrams, labelled (a) and (b), are manifestly non-
factorizable, i.e. the photon links different subprocesses so
that the propagators in the diagrams cannot be factor-
ized anymore. The diagrams (c), (d), and (e) contain both
factorizable and non-factorizable contributions. Their fac-
torizable parts are defined as the residues for on-shell W
bosons times the off-shell W -boson propagators; note that
this procedure introduces artificial soft IR divergences con-
nected with the on-shellness of the W bosons in the loops.
The non-factorizable parts of the diagrams are obtained
from the difference of the doubly-resonant contribution of
the full diagrams and their factorizable parts; the artifi-
cially introduced IR divergences of the factorizable parts
are, thus, compensated by corresponding terms in the non-
factorizable parts.

Following this strategy, the virtual corrections in DPA
can be written as

dσγγ→WW→4f
virt,DPA

=
1
2s

∫
dΦ4f

(
2 Re{δMvirt,factM∗

Born,DPA}

+δvirt,nfact|MBorn,DPA|2 + |δMHiggs|2
)
, (3.2)

where MBorn,DPA denotes the tree-level matrix element in
DPA and δvirt,nfact contains the non-factorizable correc-
tions. The factorizable corrections δMvirt,fact also contain
a contribution of the s-channel Higgs resonance, δMHiggs.
In order to describe this resonance properly, it is not suffi-
cient to include the interference of δMHiggs with the Born
matrix element, but the square of this matrix-element con-
tribution has to be taken into account in addition. To this
end, δMHiggs has to be defined in a gauge-invariant way.
Our treatment of δMHiggs is described in Sect. 3.2.4 in de-
tail.

3.2 Factorizable corrections

3.2.1 Calculation of the one-loop amplitudes

The factorizable corrections comprise the corrections to
the on-shell production of the W bosons and their on-shell
decay and can be expressed as

δMvirt,fact

=
∑

λ+,λ−

1
K+K−

(
δMγγW+W −MW+→f1f̄2

Born MW −→f3f̄4
Born

+MγγW+W −
Born δMW+→f1f̄2MW −→f3f̄4

Born

+ MγγW+W −
Born MW+→f1f̄2

Born δMW −→f3f̄4

)
, (3.3)

where we introduced the abbreviations

K± = k2
± − M2

W + iMW ΓW , (3.4)

and the δM denote one-loop matrix elements. Note that all
matrix elements on the RHS of (3.3) depend on the on-shell
projected momenta, but the momenta in K± remain un-
changed. The results for the different one-loop corrections
are already known in the literature [15–17,19]. Combining
them in (3.3) is, however, non-trivial since the polariza-
tions of the W bosons have to be defined consistently in a
common reference frame.

The one-loop corrections δMW→fif̄j to the W decays
are rather simple. In the massless limit they are propor-
tional to the respective Born matrix elements MW→fif̄j

Born ,

δMW→fif̄j (λW , p̂i, p̂j)

= δW→fif̄j MW→fif̄j

Born (λW , p̂i, p̂j), (3.5)

where δW→fif̄j is a constant correction factor that neither
depends on the kinematics nor on the helicity λW of the
decaying W boson.

The one-loop correction δMγγW+W −
to the W -pair

production process contains the complicated part; we have
derived it in two independentways.One calculation is based
on the results of [16] which were obtained in a gauge with a
non-linear gauge fixing term. The other is a new calculation
based on the program FeynArts [24] for the generation of
the amplitudes and on in-house Mathematica routines for
their algebraic reduction. This second calculation has been
carried out in the ‘t Hooft–Feynman gauge and repeated
in the background-field gauge [25] to get an additional
consistency check. The results obtained from the different
calculations are in mutual numerical agreement.

In the following we describe an efficient way for cal-
culating the contribution of δMγγW+W −

to δMvirt,fact of
(3.3), taking into account all spin correlations. As described
in [16], the matrix element δMγγW+W −

for on-shell W -
pair production is decomposed into a sum of products of
form factors Fj , which only depend on the kinematic vari-
ables s and t̂, and a set of standard matrix elements (SME)
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MγγW+W −
j , which contain the polarizations and momenta

of the external photons and W bosons,

δMγγW+W −
(k1, k2, λ1, λ2; k̂+, k̂−, λ+, λ−) (3.6)

=
36∑

j=1

Fj(s, t̂)MγγW+W −
j (k1, k2, λ1, λ2; k̂+, k̂−, λ+, λ−).

TheSMEMγγW+W −
j are obtained from the 83 basicmatrix

elements given in Sect. 2 of [16] which are reduced to 36
matrix elements as described there2. The decay matrix
elements MW→fif̄j

Born , which multiply δMγγW+W −
in (3.3),

can be included by replacing the W polarization vectors
ε∗
± in the definitions of the SME Mj by the “effective

polarization vectors”

ε̂∗ µ
+ =

e√
2sW

1
K+

ū(p̂1)γµω−v(p̂2),

ε̂∗ µ
− =

e√
2sW

1
K−

ū(p̂3)γµω−v(p̂4), (3.7)

where ū(p̂i) and v(p̂i) are the Dirac spinors of the fermions
and antifermions and ω− = 1

2 (1 − γ5) is the left-handed
chirality projector. The effective W -polarization vectors
ε̂∗

± are formal shorthands for the W propagators and the
tree-level decay matrix elements, which involve the usual
SU(2) gauge coupling e/sW. Upon substituting ε∗

± → ε̂∗
± in

the SME for on-shell W -pair production, we obtain a new
set of SME Mj that correctly transfer the W polarization
to the decay,

Mj(k1, k2, λ1, λ2; k2
+, k2

−; {p̂i}) (3.8)

= MγγW+W −
j (k1, k2, λ1, λ2; k̂+, k̂−, λ+, λ−)

∣∣∣
ε∗

±→ε̂∗
±

=
∑

λ+,λ−

1
K+K−

MγγW+W −
j (k1, k2, λ1, λ2; k̂+, k̂−, λ+, λ−)

×MW+→f1f̄2
Born (λ+, p̂1, p̂2) MW −→f3f̄4

Born (λ−, p̂3, p̂4).

The new SME Mj can be easily evaluated with spinor
methods, as e.g. described in [26].

In summary the factorizable part of the virtual correc-
tion takes the form

Mvirt,fact =
36∑

j=1

Fj(s, t̂)Mj(k1, k2, λ1, λ2; k2
+, k2

−; {p̂i})

+
(
δW+→f1f̄2 + δW −→f3f̄4

)
(3.9)

×MBorn,DPA(k1, k2, λ1, λ2; k2
+, k2

−; {p̂i}).

3.2.2 Details of the numerical evaluation

The formulas for the coefficient functions Fj are rather
lengthy and contain many one-loop integrals, which in turn

2 The on-shell momenta k̂± and the helicities λ± of the W
bosons are denoted k3,4 and λ3,4 in [16].

involve many dilogarithmic functions, etc. Thus, to speed
up the numerical evaluation it is desirable not to evaluate
the Fj at each phase-space point. Moreover, numerical in-
stabilities occur at the boundary of the phase space where
the scattering angle θ between the W bosons and the beam
axis tends to 0 or π. This is due to the inverse Gram determi-
nants appearing in the Passarino–Veltman reduction [27]
of the tensor integrals. The problems of speed and stability
can be solved by expanding the functions Fj(s, t̂) in terms
of a generalized Fourier series in the variable t̂ for fixed
values of s. The coefficients of this expansion are calculated
before the Monte Carlo integration. An appropriate system
of orthogonal functions in the variable x = cos θ, which is
equivalent to a function of t̂ for fixed s, is provided by the
Legendre polynomials

Pl(x) =
1

2ll!
dl

dxl

[
(x2 − 1)l

]
, l = 0, 1, . . . (3.10)

For this basis functions, the coefficients read

cj,l(s) =
2l + 1

2

∫ +1

−1
d cos θ (t̂ − M2

W )(û − M2
W )

×Fj(s, t̂)Pl(cos θ), (3.11)

where we have introduced the factor (t̂−M2
W )(û−M2

W ) in
order to flatten the t- and u-channel poles in the functions
Fj . This improves the efficiency of the expansion. The inte-
gration in (3.11) is carried out using Gaussian integration.
With 40 integration points the region of instability is not
entered (for energies up to a few TeV), and the integration
is sufficiently precise. During the Monte Carlo integration
the coefficient functions are recovered by the generalized
Fourier series

Fj(s, t̂) =
∞∑

l=0

1
(t̂ − M2

W )(û − M2
W )

cj,l(s)Pl(cos θ).

(3.12)
In [10] the same concept was used to evaluate the fac-

torizable corrections to e+e− → WW → 4f ; there it was
sufficient to use the Legendre polynomials up to l = 20
for a good accuracy. In the case of γγ → WW , however,
the coefficient functions involve inverse Gram determinants
1/(t̂û − M4

W ) ∝ 1/ sin2 θ which appear in the Passarino–
Veltman reduction of the tensor integrals. As each step in
this recursive reduction involves such an inverse determi-
nant, 1/(t̂û−M4

W ) can appear up to the fourth power. At
cos θ ≈ ±1 this factor leads to a behaviour of the Fj(s, t̂)
that is not well approximated by the Legendre expansion.
Using higher-order Legendre polynomials is not a solution
since this increases the calculation time and also requires
more integration points for the Gaussian integration. The
more points are used in the Gaussian integration, the closer
some of these points approach the integration boundary
where the numerical stability of the coefficient function
breaks down. Therefore, we follow a different strategy based
on the fact that the helicity amplitudes for the on-shell pro-
cess γγ → WW are smooth functions of cos θ, apart from
the t- and u-channel poles. Thus, within the full amplitude
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the factors 1/(t̂û−M4
W ) have to cancel between contribu-

tions of different coefficient functions. To make use of this
fact we change the basis of SME by a linear transformation
in such a way that the new coefficient functions correspond
to helicity amplitudes of the on-shell process γγ → WW .
Some details of this transformation can be found in Ap-
pendix A. After this transformation the uncertainty of the
approximated matrix elements in (3.6) is well below 10−4

with respect to the Born matrix elements for all values of
cos θ.

In contrast to the e+e− case, the CM energy
√

s of
the photons is not fixed. Thus, we have to perform the
Legendre expansions for different values of s. During the
Monte Carlo integration we derive an approximate value
of the coefficients cj,l(s) by interpolation. Since the Fj(s, t̂)
depend on s very smoothly, it is sufficient to calculate the
cj,l(s) at intervals of ∆s � 1 GeV. In these intervals we
then interpolate with a polynomial of third order. We have
checked that, up to 1 TeV, this yields a sufficient accuracy
(i.e. better than the accuracy of the Legendre expansion).

3.2.3 Renormalization and imaginary parts
of virtual corrections

For on-shell W -pair production, which was considered
in [16], imaginary parts of counterterms, if included, do not
influence the correction to the matrix-element square. The
reason is that for the 2 → 2 scattering process γγ → WW
all SME, and thus also the Born matrix element, can be
taken real by appropriate phase choices. Thus, the op-
eration of taking the real part in the interference term
2 Re{MctM∗

Born} of the counterterm contribution Mct to
the one-loop amplitude with the Born amplitude effectively
acts on the renormalization constants themselves.The same
argument shows that also imaginary parts of loop integrals
drop out. These arguments are no longer true if the decay
of the W bosons is taken into account, because the SME
and the Born matrix element MBorn,DPA become neces-
sarily complex. Thus, imaginary parts of renormalization
constants and of loop integrals in general matter. Consid-
ering the W -decay amplitudes in the DPA in more detail,
as e.g. done in [13] for the e+e− case, one can see that
imaginary parts average to zero after the azimuthal decay
angles of the W -decay products are integrated over.

We have calculated the virtual corrections taking into
account the imaginary parts of all loop integrals. As al-
ready mentioned, we carried out the whole loop calculation
in different gauges: in the ‘t Hooft–Feynman gauge [28],
in a non-linear gauge [16], and in the background-field
gauge [25]. We find agreement between the results obtained
in these different gauges, but only if we also take into ac-
count the imaginary parts of the loops that contribute to
renormalization constants. In order to explain this fact,
we consider the counterterm contributions to the one-loop
matrix element in more detail.

Following [16], we write the Born matrix element in
DPA as

MBorn,DPA = 8πα

{
s

M2
W − t̂

M0,t +
s

M2
W − û

M0,u

−(ε1ε2)(ε̂∗
+ε̂∗

−)
}

, (3.13)

where M0,t and M0,u are abbreviations for specific combi-
nations of momenta and polarization vectors defined as in
(22) of [16] for on-shell W -pair production. In the ‘t Hooft–
Feynman gauge, the counterterm contribution to the pro-
duction part of the factorizable correction reads

δMtHF
ct,prod

= MBorn,DPA

(
2δZe + δZW + δZAA − cW

sW
δZZA

)

− 8πα

(
sδM2

W

(t̂ − M2
W )2

M0,t +
sδM2

W

(û − M2
W )2

M0,u

)

− 4πα

(
(ε1ε̂

∗
+)(ε2ε̂

∗
−)

(t̂ − M2
W )

+
(ε1ε̂

∗
−)(ε2ε̂

∗
+)

(û − M2
W )

)

×
(

2δM2
W +

M2
W

sWcW
δZZA

)
(3.14)

+ 4πα
eMW

2sW

(
(ε1ε̂

∗
+)(ε2ε̂

∗
−)

(t̂ − M2
W )2

+
(ε1ε̂

∗
−)(ε2ε̂

∗
+)

(û − M2
W )2

)
δt,

where we adopt the conventions of [28] for the renormal-
ization constants δZe, δZW , etc. The explicit calculation
of the constants in terms of self-energies is also described
there. The counterterm contribution in the background-
field gauge [25] can be obtained from δMtHF

ct,prod by simply
omitting the δZZA terms, because δZZA vanishes owing
to the background-field gauge invariance. In the non-linear
gauge the counterterm contribution reads

δMNL
ct,prod (3.15)

= MBorn,DPA

(
2δZe + δZW + δZAA − cW

sW
δZZA

)

− 8πα

(
sδM2

W

(t̂ − M2
W )2

M0,t +
sδM2

W

(û − M2
W )2

M0,u

)
,

as described in [16], which is different from its counterpart
in ‘t Hooft–Feynman gauge. Note also that the explicit
expressions of the renormalization constants in the different
gauges are in general different.

Imaginary parts of loop and counterterm contributions
that are proportional to the Born matrix element, δM =
cMBorn, cannot influence matrix-element squares, because
2 Re{δMM∗

Born} = 2 Re{c}|MBorn|2. Thus, the W -mass
renormalization constant δM2

W is the only renormalization
constant whose imaginary part plays a role, since the tad-
pole counterterm δt is a real quantity. From (3.14) and
(3.15), we see that δM2

W , which is equal in all three con-
sidered gauges, enters the counterterm contributions in
the ‘t Hooft–Feynman gauge and in the non-linear gauge
in different ways. In fact, we have checked numerically
that the virtual corrections in these two gauges are dif-
ferent (though finite) if the usual on-shell prescription
δM2

W = Re{ΣW
T (M2

W )} (see e.g. [28]) is applied, where
ΣW

T (k2) is the transverse part of the W boson self-energy
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with momentum transfer k. If we, on the other hand, use
the definition δM2

W = ΣW
T (M2

W ), i.e. without taking the
real part of the self-energy, we find agreement for the re-
sults from the different gauges. This clearly shows that
the imaginary part of a one-loop amplitude is in general
gauge dependent if imaginary parts in renormalization con-
stants are not taken into account. The reason for this fact,
in other words, is that the decomposition of a renormal-
ized transition matrix element into genuine loop parts and
counterterm contributions depends on the gauge fixing.3

In our Monte Carlo generator we have taken into ac-
count the imaginary parts of the virtual corrections (in-
cluding the ones from counterterms); more precisely they
can be switched on and off optionally. As explained above,
they could only affect observables that are sensitive to the
azimuthal decay angles of the fermions. In our numerical
results, we could, however, find no significant effects.

3.2.4 Higgs resonance

The loop-induced Higgs resonance, γγ → H → WW →
4f , belongs to the class of factorizable contributions. Nev-
ertheless, its treatment, especially the question of gauge
invariance when including the Higgs decay width, deserves
some care. In [16] the diagrams with an s-channel Higgs
resonance were decomposed into a gauge-invariant reso-
nant part and a gauge-dependent non-resonant part. If we
write the contribution of the Higgs-exchange diagrams as

δMγγH =
FH(s)
s − M2

H

(ε1ε2)(ε̂∗
+ε̂∗

−), (3.16)

with FH(s) given in Sect. 4.3 of [16], and ε1 and ε2 being
the polarization vectors of the photons, then the Higgs
decay width can be introduced by replacing

δMγγH →
(

FH(M2
H)

s − M2
H + iMHΓH

+
FH(s) − FH(M2

H)
s − M2

H

)

×(ε1ε2)(ε̂∗
+ε̂∗

−). (3.17)

As the residue FH(M2
H) is gauge independent, we have

introduced the Higgs decay width ΓH in a gauge-invariant
way. Recall that the choice of the polarization vectors of
the photons is such that they obey

εikj = 0, i, j = 1, 2. (3.18)

Close to the resonance, the contribution of the Higgs-
exchange diagrams is strongly enhanced. This is why we
also take into account the square of the resonant part in
(3.2),

δMHiggs =
FH(M2

H)(ε1ε2)(ε̂∗
+ε̂∗

−)
s − M2

H + iMHΓH
. (3.19)

3 A consistent renormalization prescription with complex
renormalization constants naturally leads to complex masses
for unstable particles. Such a renormalization scheme was pro-
posed recently in [8] in the context of a full O(α) calculation
for e+e− → 4f .

In this approach only the leading contribution to the
Higgs resonance is taken into account. However, the gauge-
invariant separation of δMHiggs from the remaining one-
loop amplitude easily allows for specific improvements in
predictions for the Higgs production signal in the future. To
this end, a pole expansion about the Higgs resonance would
be anadequate first step.Conceptually this expansion again
leads to factorizable and non-factorizable contributions,
but the corresponding ingredients are not all available yet
and their calculation is beyond the scope of this work.
It should be mentioned that both the O(α) electroweak
and O(αs) QCD virtual factorizable corrections to (on-
shell) Higgs production γγ → H can be deduced from the
corresponding two-loop calculations [29] (see also references
therein) for the decay H → γγ.

3.3 Non-factorizable corrections

As explained in Sect. 3.1, we make use of the result for
the non-factorizable corrections to e+e− → WW → 4f .
According to [10,21] we write the correction factor to the
lowest-order cross section as a sum over contributions that
are associated with different pairs of fermions,

δvirt,nfact (3.20)

=
∑

a=1,2

∑
b=3,4

(−1)a+b+1QaQb
α

π
Re

{
∆virt(k+, pa; k−, pb)

}
.

The function ∆virt receives contributions from the different
types of diagrams in Fig. 2,

∆virt = ∆virt
mf′ + ∆virt

ff′ + ∆virt
mm′ + ∆virt

mf + ∆virt
mm, (3.21)

for which the results were given in terms of scalar integrals
in [10]. The final result for a = 2, b = 3 (all other contri-
butions can be derived by appropriate substitutions) is

∆virt
mf′ + ∆virt

ff′ + ∆virt
mf

∼ −K+K−s23 det(Y0)
det(Y )

×D0(−p4, k+ + p3, p2 + p3, 0, M, M, 0)

−K+ det(Y3)
det(Y )

F3 − K− det(Y2)
det(Y )

F2

+ ln
(

λ2

M2
W

)
ln

(
− s23

M2
W

− iε
)

,

∆virt
mm′ ∼ (2M2

W − s)

×
{

C0(k+,−k−, 0, M, M)

−C0(k+,−k−, λ, MW , MW )
∣∣∣
k2

±=M2
W

}
,

∆virt
mm ∼ 2 ln

(
λMW

−K+

)
+ 2 ln

(
λMW

−K−

)
+ 4, (3.22)



34 A. Bredenstein et al.: Four-fermion production at γγ colliders: 2. Radiative corrections in double-pole approximation

where the sign “∼” indicates that the limit k2
± → M2

W and
ΓW → 0 is carried out whenever this does not lead to a
singularity. The matrices Y0, Y2, Y3, and Y arise from the
reduction of 5-point functions and can be found in Sect. 3.1
of [21]. The functions F2 and F3 are defined in Sect. 4.2,
and the C0 and D0 functions in Appendix C.1 of the same
reference. The contribution ∆virt

mm′ contains the difference
of the full off-shell and on-shell Coulomb singularity, as
described there in detail.

The full correction factor δvirt,nfact does not contain
fermion-mass singularities [10], but involves IR-singular
terms ln λ, as explicitly visible in (3.22). The latter origi-
nate from the subtraction of the virtual factorizable cor-
rection, which involves the one-loop matrix elements for
γγ → WW and W → ff̄ ′ with on-shell W bosons, from
the doubly-resonant part of the matrix element for the full
γγ → 4f process. Specifically, the lnλ terms stem from
diagrams with photon exchange between an on-shell W
boson and another on-shell particle. As already explained
in Sect. 3.1, these singularities cancel in the sum of factor-
izable and non-factorizable contributions, since they are
artificially introduced in the corresponding decomposition
of the virtual correction.

3.4 Leading universal corrections
and input-parameter scheme

We parametrize the cross section in such a way that the
universal corrections arising from the running of the elec-
tromagnetic coupling α and from the ρ-parameter are ab-
sorbed in the lowest order. To this end, we take all particle
masses as input, from which the weak mixing angle is de-
rived via the on-shell condition

s2
W = 1 − c2

W = 1 − M2
W

M2
Z

. (3.23)

The electromagnetic coupling α is chosen in order to absorb
some universal corrections.

As pointed out in [16], the relevant coupling for the
γγ → WW production process is the fine-structure con-
stant α(0), because the external on-shell photons do not
induce any running in their coupling to the W bosons.
This means that the on-shell renormalization is carried
out precisely as described in [25,28] for this contribution.

For the decay of the W bosons, it is, however, appro-
priate to derive α from the Fermi constant Gµ leading to

αGµ =
√

2GµM2
W s2

W

π
. (3.24)

This modification of the coupling induces an additional
finite contribution to the charge renormalization constant,

δZe|Gµ
= δZe|α(0) − 1

2
∆ r, (3.25)

where δZe|α(0) is the charge renormalization constant of
the on-shell renormalization schemes [25,28] with α(0) as

renormalized coupling. The quantity ∆r contains the ra-
diative corrections to muon decay; explicit expressions for
∆r can, e.g., be found in [28,30].

In summary, our lowest-order cross section scales like
α(0)2α2

Gµ
. For the relative O(α) corrections we use α(0),

which is the correct effective coupling for real photon emis-
sion, so that the corrected cross section scales likeα(0)3α2

Gµ
.

For the loop-induced Higgs resonance we exceptionally take
the scaling factor α(0)2α3

Gµ
, which accounts for the two

“photonic” and the three “weak” couplings in the corre-
sponding diagrams. We perform this rescaling, of course,
only in the gauge-invariant resonant part δMHiggs of the
one-loop amplitude, as defined in (3.19).

3.5 Improved Born approximation

The motivation for calculating the virtual corrections in
DPA lies in the dominance of doubly-resonant diagrams.
At threshold, however, singly-resonant and non-resonant
diagrams become equally important, thus, rendering the
naive error estimate of O(αΓW /(MW π)) unreliable. As a
consequence, we decided to use the DPA only for a CM
energy √

sγγ > 170 GeV when integrating over the pho-
ton spectrum. For √

sγγ < 170 GeV we make use of an
improved Born approximation (IBA), i.e. we approximate
the O(α) corrections by universal contributions without
any expansion about the W resonances. Assuming that the
IBA accounts for all O(α) corrections with pronounced en-
hancement factors, the relative uncertainty of the IBA is
about ∼ ±2%. For the corresponding e+e− reaction this
expectation was confirmed by the full O(α) calculation [7,8]
for 4f production.

In detail, we start from the Born cross section based on
the full set of γγ → 4f diagrams, which is parametrized as
described in the previous section and include the Higgs res-
onance with SM couplings. Such lowest-order predictions,
which we denote “Born+Higgs” below, have already been
presented in [3]. In addition, we now dress the resulting
cross section with the off-shell Coulomb singularity,∫

dσγγ→4f
IBA =

1
2s

∫
dΦ4f (1 + δCoul)|Mγγ→4f

Born+Higgs|2.

(3.26)

The correction factor δCoul for the Coulomb singularity was
calculated in [31] to

δCoul =
α(0)
β̄

Im
{

ln
(

β + ∆ − β̄

β + ∆ + β̄

)}
, (3.27)

with the abbreviations

β̄ =
1
s

√
s2 + (k2

+)2 + (k2−)2 − 2sk2
+ − 2sk2− − 2k2

+k2−,

β =

√
1 − 4(M2

W − iMW ΓW )
s

, ∆ =
|k2

+ − k2
−|

s
.

(3.28)
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4 Treatment of soft
and collinear photon emission

We calculate the real-photonic corrections from the full
lowest-order matrix element of the process (2.4) without
any expansion about the W -boson resonances. They are
calculated from the integral∫

dσγγ→4fγ =
1
2s

∫
dΦ4fγ |Mγγ→4fγ |2 Θ(Φ4fγ), (4.1)

where we have made the implementation of phase-space
cuts explicit by including the step function Θ(Φ4fγ), which
is equal to 1 if an event passes the cuts and 0 otherwise. Since
we evaluate the real matrix element Mγγ→4fγ with mass-
less particles, the phase-space integral diverges in the soft
and collinear regions, where the emitted photon is either
soft or collinear to an outgoing external charged fermion.
In these regions we reintroduce a formally infinitesimal
photon mass λ and small fermion masses mf as regulators.

To this end, we apply two different methods: the dipole
subtraction and the (two-cutoff) phase-space slicing meth-
ods. In the case of collinear-safe observables we closely
follow the approach of [10] and only give a brief descrip-
tion in Sect. 4.1 since the procedure is very similar to the
e+e− case. In Sect. 4.2 we describe how the two methods
are extended to non-collinear-safe observables.

4.1 Collinear-safe observables

4.1.1 Phase-space slicing

In the phase-space slicing approach the phase space is di-
vided into regions where the integrand is finite and can,
thus, be integrated numerically, and regions where the in-
tegrand becomes singular. In the singular regions the inte-
gration over the photon phase space is carried out analyt-
ically in the approximation that the photon is soft and/or
collinear to a charged fermion.

The singular regions consist of two parts one of which
contains a soft photon (k0 < ∆E) and the other a photon
that is collinear but not soft (k0 > ∆E and θγf < ∆θ, where
θγf is the angle between the photon and a charged fermion).
Thus, the real corrections are decomposed according to∫

dσγγ→4fγ =
∫

dσsoft +
∫

dσcoll +
∫

dσγγ→4fγ
finite , (4.2)

where the cutoff parameters ∆E and ∆θ are defined in the
CM system of the incoming photons. Both in the soft and
collinear regions the squared matrix element |Mγγ→4fγ |2
factorizes into the squared lowest-order matrix element
|Mγγ→4f

Born |2 and a universal factor containing the singu-
larity. The five-particle phase space also factorizes into a
four-particle phase space and a photon part, so that dσsoft
and dσcoll can be integrated over the photon momentum.
Taking over the results from [10] yields

dσsoft = dσγγ→4f
Born Θ(Φ4f )

α

π

×
4∑

i=1

4∑
j=i+1

(−1)i+jQiQj

{
2 ln

(
2∆E

λ

)[
1 − ln

(
sij

mimj

)]

− ln

(
4p0

i p
0
j

mimj

)
+ ln2

(
2p0

i

mi

)
+ ln2

(
2p0

j

mj

)
+

π2

3

+ Li2

(
1 − 4p0

i p
0
j

sij

)}
(4.3)

and

dσcoll = dσγγ→4f
Born Θ(Φ4f )

α

2π

×
4∑

i=1

Q2
i

{[
3
2

+ 2 ln
(

∆E

p0
i

)][
1 − 2 ln

(
∆θ p0

i

mi

)]

+ 3 − 2π2

3

}
, (4.4)

where Qi and mi denote the relative electric charge and
mass of fermion fi, respectively. The step function Θ(Φ4f )
indicates that both dσsoft and dσcoll are defined on the
four-particle phase space of the lowest-order cross section,
so that the singular part

dσγγ→4fγ
sing = dσsoft + dσcoll (4.5)

can be locally combined with the singular part of the virtual
corrections, which are defined on the same phase space. In
the result dσγγ→4f

virt+real,sing all dependences on the photon and
fermion masses (ln λ, lnmi) cancel.

While dσγγ→4f
virt+real,sing depends on the cutoff parame-

ters ∆E and ∆θ analytically, the finite real corrections∫
dσγγ→4fγ

finite only show this dependence upon the cuts in the
numerical integration. Nevertheless, the cutoff dependence
has to cancel in the full result in the limit ∆E, ∆θ → 0.
This is illustrated on the LHS of Figs. 3 and 4 where the
relative correction factor δ = σ/σBorn − 1 of the 4f part
(
∫

dσγγ→4f
virt,finite,DPA +

∫
dσγγ→4f

virt+real,sing) and of the 4fγ part∫
dσγγ→4fγ

finite is shown as a function of the cutoff parameters
∆E and ∆θ. The cancellations of the cutoff dependence of
the two contributions is shown on a smaller scale on the
RHS of Figs. 3 and 4. While terms of O(∆E/Ebeam) and
O(∆θ) become visible for large values of the cutoff param-
eters, for smaller values a plateau is reached. The integra-
tion error increases with decreasing cutoff values, until for
too small values the integration error is usually underesti-
mated. As a result, we decided to take ∆E/Ebeam = 10−3

and ∆θ = 10−2 as default values.

4.1.2 Dipole subtraction method

In a subtractionmethodanauxiliary function is constructed
that contains the same singularities as the real corrections.
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Fig. 3. Dependence of the cor-
rections on the energy cutoff in
the slicing approach for the pro-
cess γγ → νee

+dū at √
sγγ =

500 GeV. For comparison the cor-
responding result obtained with
the dipole subtraction method is
shown as a 1σ band in the plot
on the RHS
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Fig. 4. Dependence of the cor-
rections on the angular cutoff in
the slicing approach for the pro-
cess γγ → νee

+dū at √
sγγ =

500 GeV. For comparison the cor-
responding result obtained with
the subtraction method is shown
as a 1σ band in the plot on
the RHS

Subtracting this function from the real corrections, this dif-
ference can be integrated numerically. The next step is to
perform the singular integration of the auxiliary function
over the photon momentum analytically and to re-add the
result to the virtual corrections. In our case where soft and
collinear singularities originate from final-state radiation
only, the soft and collinear singularities completely can-
cel against their counterparts in the virtual corrections for
collinear-safe observables.

In the dipole subtraction method [22, 23], which was
originally proposed for QCD [32], the auxiliary function
consists of different contributions labelled by all ordered
combinations of two charged fermions i and j, which are
called emitter and spectator. These contributions contain
the singularities connected with the emitter i. Since there
are only charged particles in the final state in γγ → 4f ,
the situation is simpler than for e+e− → 4f . Explicitly
the auxiliary function, which is subtracted from the spin-
summed squared bremsstrahlung matrix element, reads

|Msub|2 =
4∑

i,j=1
i �=j

|Msub,ij |2,

|Msub,ij(Φ4fγ)|2 (4.6)

= −(−1)i+jQiQje
2g

(sub)
ij (pi, pj , k)|Mγγ→4f

Born (Φ̃4f,ij)|2.
Adopting the formulation of [22]4, the soft and collinear
divergences are contained in the function

g
(sub)
ij (pi, pj , k) (4.7)

=
1

(pik)(1 − yij)

[
2

1 − zij(1 − yij)
− 1 − zij

]

with

yij =
pik

pipj + pik + pjk
, zij =

pipj

pipj + pjk
. (4.8)

The embedding of the 4f phase space Φ̃4f,ij into the 4fγ
phase space Φ4fγ is defined as

p̃µ
i = pµ

i + kµ − yij

1 − yij
pµ

j , p̃µ
j =

1
1 − yij

pµ
j , (4.9)

4 The formulation of [23] differs from that by the regular factor
1/(1 − yij) in (4.7), so that the readded singular contributions
of [22] and [23] differ by non-singular finite parts.
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with all other momenta unchanged, p̃k = pk, k �= i, j.
Subtracting the auxiliary function from the real corrections
enables us to carry out the numerical integration,

∫
dσγγ→4fγ

finite =
1
2s

∫
dΦ4fγ


|Mγγ→4fγ |2Θ(Φ4fγ)

−
4∑

i,j=1
i�=j

|Msub,ij |2Θ(Φ̃4f,ij)


 , (4.10)

which does not contain any soft or collinear divergences
by construction of |Msub|2 for collinear-safe observables.
In this context, it is important to notice the different ar-
guments of the step functions Θ which account for phase-
space cuts. Since for a generic point in 4fγ phase space
each ij contribution corresponds to a different point in
phase space, there is in general no correlation between the
values of the different step functions. For collinear-safe ob-
servables, however, we have Θ(Φ4fγ) = Θ(Φ̃4f,ij) in the
soft region (k → 0) and in the region where the photon
momentum k is nearly collinear to the emitter momentum
pi (pik → 0). The collinear safety can, e.g., be enforced by
photon recombination, as discussed in the next section in
more detail.

In order to combine the subtraction function with the
virtual correction, it has to be integrated over the photon
momentum, yielding

∫
dσγγ→4fγ

sing = − α

2π

4∑
i,j=1
i�=j

(−1)i+jQiQj (4.11)

× 1
2s

∫
dΦ4f G

(sub)
ij (sij)|Mγγ→4f

Born (Φ4f )|2Θ(Φ4f ).

The singularities are contained in the function

G
(sub)
ij (sij) = L(sij , m

2
i ) − π2

3
+

3
2

(4.12)

with

L(sij , m
2
i ) = ln

(
m2

i

sij

)
ln

(
λ2

sij

)
+ ln

(
λ2

sij

)
− 1

2
ln2

(
m2

i

sij

)

+
1
2

ln
(

m2
i

sij

)
. (4.13)

We have numerically checked that these soft and collinear
divergences are completely cancelled by their counterparts
in the virtual correction.

4.2 Non-collinear-safe observables

In the previous sections the matching of real and virtual
corrections was described for collinear-safe observables. We
speak of collinear-safe observables if a nearly collinear sys-
tem of a charged fermion and a photon is treated inclusively,

i.e. if phase-space selection cuts (or histogram bins of dis-
tributions) depend only on the sum pi + k of the nearly
collinear fermion and photon momenta. In this case the
energy fraction

zi =
p0

i

p0
i + k0 (4.14)

of a charged fermion fi after emitting a photon in a suf-
ficiently small cone around its direction of flight is fully
integrated over, because it is not constrained by any phase-
space cut (or histogram bin selection in distributions).
Thus, the KLN theorem [33] guarantees that all singular-
ities connected with final-state radiation cancel between
the virtual and real corrections, even though they are de-
fined on different phase spaces. A sufficient inclusiveness
is, e.g., achieved by the photon recombination described
in Sect. 5.1, which treats outgoing charged fermions and
photons as one quasi-particle if they are very close in angle.

In the previous section we could, therefore, integrate the
subtraction function |Msub|2 and the slicing contribution
dσcoll over zi analytically. In this section we are concerned
withnon-collinear-safe observables, i.e. the fermion–photon
system is not treated inclusively and fermion-mass singu-
larities can become visible. As the integration over zi now
is constrained by phase-space cuts (or histogram bins), we
have to modify the methods described in the previous sec-
tion in such a way that the integration over zi is part of
the numerical phase-space integration.

4.2.1 Phase-space slicing

In the slicing method the procedure is straightforward.
The numerical integration over z = zi in the collinear
parts reads

dσcoll = dσγγ→4f
Born (Φ̃4f )

α

2π

4∑
i=1

Q2
i

∫ 1−∆E/p̃0
i

0
dz

×Θ (pi = zp̃i, k = (1 − z)p̃i, {p̃j �=i}) (4.15)

×
{

Pff (z)
[
2 ln

(
∆θ p̃0

i

mi
z

)
− 1

]
+ (1 − z)

}
,

with the splitting function

Pff (z) =
1 + z2

1 − z
. (4.16)

The Born cross section and the logarithm still depend on
the momenta of the 4f phase space Φ̃4f which are labelled
p̃i. In the cut and recombination function Θ, however, the
momentum p̃i of the fermion i (before photon emission)
is distributed to the fermion momentum pi and the pho-
ton momentum k. For collinear-safe observables, as e.g.
achieved by photon recombination, the Θ function effec-
tively only depends on the sum pi +k = p̃i of the collinear
momenta, which is independent of z. In this case, the Θ
function becomes Θ(Φ̃4f ), and the z-integration can be
easily carried out analytically yielding (4.4).
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4.2.2 Dipole subtraction method

In the case of the dipole subtraction method the generaliza-
tion to non-collinear-safe observables is more complicated
than in the slicing approach, since the integration over
the photon momentum is more involved. Here, we collect
the formulas relevant for our calculation. Details on their
derivation are given in Appendix B.

In order to keep the information on the energy fraction
z in each part of the subtraction function, the finite part
of the real corrections is modified to

∫
dσγγ→4fγ

finite =
1
2s

∫
dΦ4fγ


|Mγγ→4fγ |2Θ(Φ4fγ) (4.17)

−
4∑

i,j=1
i �=j

|Msub,ij |2Θ (pi = zij p̃i, k = (1 − zij)p̃i, {p̃k �=i})


 .

It is easily seen that the variable zij , which is defined in
(4.8), plays the role of the energy fraction zi in the collinear
limit for each dipole ij. Again, in the collinear-safe case
the Θ functions of the subtraction function depend only
on the sums pi + k = p̃i of collinear momenta; in this case
we recover (4.10).

In the integration of the subtraction function over the
photon phase space, we now have to leave the integra-
tions over zij open. The resulting zij dependence of the
integrand is most conveniently described with a [. . .]+ pre-
scription5, which separates the soft singularity at zij = 1.
The endpoint part at zij = 1, which results from the full in-
tegration over zij , exactly corresponds to the contribution
of G

(sub)
ij (s̃ij) for the collinear-safe case, as given in (4.12),

where s̃ij = 2p̃ip̃j . The continuum part in zij involves an

integral over
[
Ḡ(sub)

ij (s̃ij , zij)
]
+

with

Ḡ(sub)
ij (s̃ij , z)=Pff (z)

[
ln

(
s̃ijz

m2
i

)
− 1

]
+ (1 + z) ln(1 − z)

+(1 − z). (4.18)

The total integrated subtraction part explicitly reads

∫
dσγγ→4fγ

sing = − α

2π

4∑
i,j=1
i �=j

(−1)i+jQiQj

× 1
2s

∫
dΦ̃4f,ij |Mγγ→4f

Born (Φ̃4f,ij)|2

×
{

G
(sub)
ij (s̃ij)Θ(Φ̃4f,ij) +

∫ 1

0
dz

[
Ḡ(sub)

ij (s̃ij , z)
]
+

×Θ (pi = zp̃i, k = (1 − z)p̃i, {p̃k �=i})
}

. (4.19)

5 We use the definition∫ 1
0 dx [f(x)]+ g(x) ≡ ∫ 1

0 dx f(x) [g(x) − g(1)].

Owing to the [. . .]+ prescription, the continuum part is
zero if the full integration over z is carried out, thereby
recovering the collinear-safe case (4.11).

5 Numerical results

5.1 Input parameters and setup

We use the following set of input parameters [34]:

Gµ = 1.16639 × 10−5 GeV−2,

α(0) = 1/137.03599976, αs = 0.1172,

MW = 80.423 GeV, ΓW = 2.118 GeV,

MZ = 91.1876 GeV, ΓZ = 2.4952 GeV,

me = 0.510998902 × 10−3 GeV,

mµ = 0.105658357 GeV,

mτ = 1.77699 GeV, mu = 0.066 GeV,

mc = 1.2 GeV, mt = 174.3 GeV,

md = 0.066 GeV, ms = 0.15 GeV,

mb = 4.3 GeV.

(5.1)

If not stated otherwise, the Higgs mass is MH = 170 GeV.
In some cases we alternatively use MH = 130 GeV. The
corresponding values for the Higgs-boson decay width ΓH ,
which have been obtained with the program HDECAY [35],
are given by

ΓH (MH = 170 GeV) = 0.3834 GeV,

ΓH (MH = 130 GeV) = 0.004995 GeV. (5.2)

We set the quark-mixing matrix to the unit matrix through-
out, but in the limit of massless external fermions a non-
trivial quark-mixing matrix can be included by a simple
rescaling of the cross sections.

Furthermore, we apply a set of recombination and sep-
aration cuts.
(1) Bremsstrahlung photons that are closer than 5◦ to a
charged fermion or have less energy than 1 GeV are recom-
bined with the charged fermion that is closest in angle. This
means that in this case before evaluating distributions or
applying phase-space cuts the momenta of the photon and
the fermion are added and associated with the fermion,
while the photon is discarded.
(2) The following separation cuts are applied to the mo-
menta defined after a possible recombination:

El > 10 GeV, θ(l, beam) > 5◦, θ(l, l′) > 5◦, θ(l, q) > 5◦,

Eq > 10 GeV, θ(q, beam) > 5◦, m(q, q′) > 10 GeV, (5.3)

where an obvious notation for energies E..., angles θ(. . .),
and invariant masses m(. . .) for leptons l and quarks q
is used.

The separation cuts and input parameters are the same
as in [3]6 for the processes γγ → 4f , so that we repro-
duce the Born cross sections that we calculated there. In

6 There is a misprint in (6.1) of [3]. The value for αs is
supposed to be αs = 0.1172 and not αs = 1.1172.
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Table 1. Integrated cross sections for different final states and energies with and without
convolution over the photon spectrum. The third column shows the result obtained with the
subtraction method and the fourth with the slicing method. The last two columns show the
Born cross section and the relative difference between subtraction and slicing

σ[ fb] σBorn[ fb]
CM energy final state subtraction slicing (sub–sli)/sli

νee
+µ−ν̄µ 581.403(67) 581.41(16) 575.628(64) 0.00(3)%√

sγγ = 200 GeV νee
+dū 1734.02(23) 1735.26(43) 1716.10(22) −0.07(3)%

without γ spectrum ud̄e−ν̄e 1734.24(23) 1734.32(43) 1716.06(22) 0.00(3)%
ud̄sc̄ 4931.01(76) 4935.0(1.0) 4878.67(73) – 0.08(3)%
νee

+µ−ν̄µ 801.21(11) 801.57(20) 826.620(91) −0.05(3)%√
sγγ = 500 GeV νee

+dū 2278.50(34) 2279.96(51) 2351.37(30) −0.06(3)%
without γ spectrum ud̄e−ν̄e 2278.45(34) 2278.84(48) 2351.39(30) −0.02(3)%

ud̄sc̄ 6452.2(1.0) 6452.8(1.2) 6662.25(96) −0.01(2)%
νee

+µ−ν̄µ 696.25(15) 696.68(17) 746.995(93) −0.06(3)%√
sγγ = 1000 GeV νee

+dū 1836.31(43) 1836.96(45) 1979.92(29) −0.04(3)%
without γ spectrum ud̄e−ν̄e 1836.37(42) 1836.95(42) 1979.95(29) −0.03(3)%

ud̄sc̄ 4892.2(1.2) 4891.4(1.1) 5300.97(90) 0.02(3)%
νee

+µ−ν̄µ 0.073205(44) 0.073205(44) 0.072009(44) 0√
see = 200 GeV νee

+dū 0.33129(21) 0.33129(21) 0.32601(21) 0
with γ spectrum ud̄e−ν̄e 0.39204(25) 0.39204(25) 0.38593(24) 0

ud̄sc̄ 1.24460(79) 1.24460(79) 1.22537(78) 0
νee

+µ−ν̄µ 190.757(60) 190.835(96) 190.816(45) −0.04(6)%√
see = 500 GeV νee

+dū 559.18(18) 559.63(24) 558.50(14) −0.08(5)%
with γ spectrum ud̄e−ν̄e 564.58(18) 564.79(25) 565.05(14) −0.04(5)%

ud̄sc̄ 1604.92(54) 1605.60(59) 1603.80(45) −0.04(5)%
νee

+µ−ν̄µ 165.759(91) 165.604(81) 170.588(41) 0.09(7)%√
see = 1000 GeV νee

+dū 461.02(20) 461.34(23) 474.81(12) −0.07(7)%
with γ spectrum ud̄e−ν̄e 472.10(19) 471.61(24) 485.65(13) 0.10(7)%

ud̄sc̄ 1296.49(52) 1295.29(62) 1335.13(38) 0.09(6)%

particular, we exclude forward and backward scattered
charged fermions, because they cause collinear singular-
ities. While for final-state quarks these singularities signal
a non-perturbative regime, for leptons they are in principle
cured by finite-mass effects. However, we exclude this re-
gion by demanding that leptons appear in the detector with
finite production angle and energy. Compared to [10] we use
different recombination cuts, because, in contrast to e+e−
collisions, the recombination criterion based on invariant
masses does not lead to collinear-safe observables. This
is due to the collinear singularity that arises if a charged
fermion is collinear to the beam. Even though an appro-
priate cut on the angle between charged fermions and the
beam is imposed, it might happen that a photon with rela-
tively high energy is recombined with a low-energy fermion
that is close to the beam. Thus, after recombination, the
fermion almost follows the direction of the photon and is
not affected by the angular cut. Such events are avoided
by taking a recombination condition based on the angle.

For the evaluation of the lowest-order matrix elements
of γγ → 4f and γγ → 4fγ, we use the fixed-width scheme,
in which the gauge-boson width is introduced in all (i.e.
time- and space-like) propagators. As argued in Sect. 2.4

of [3], this scheme does not break gauge invariance for
reactions γγ → 4f(+γ) with massless external fermions.

The photon spectrum is accounted for by using the
parametrization of the program CompAZ [4], as described
in Sect. 5 of [3]. In order to distinguish the cases with and
without convolution over the photon spectrum, we write√

see and √
sγγ for the CM energies in these cases, respec-

tively.
In the numerical integration we generate 2 · 107 events

for the plots showing the integrated cross sections, and
5 · 107 events for distributions and for the integrated cross
sections in Table 1. If not stated otherwise, the shown
results are based on the subtraction method, but have
been cross-checked with the slicing approach. Moreover,
we have additionally checked most of the results by re-
producing them within statistical uncertainties with our
second independent Monte Carlo generator.

5.2 Integrated cross sections

In Table 1 we present a survey of integrated cross sections
for a leptonic, a hadronic, and two semi-leptonic final states,
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Fig. 5a–f. Integrated cross section
for γγ → νee

+dū (the two upper
plots) and relative radiative correc-
tions (the four lower plots) with-
out convolution over the photon
spectrum for Higgs masses MH =
130 GeV and 170 GeV

as obtained with the subtraction and slicing methods. The
cross sections of the semi-leptonic final states differ be-
cause of the effective polarizations of the photons resulting
from the Compton backscattering (cf. Sect. 6.3 of [3]). Fi-
nal states that differ only in the fermion generation (i.e. in
their mass values) receive the same radiative corrections,
since our predictions are based on the massless limit for
the external fermions and mass singularities cancel after
performing a photon recombination. The results obtained

with the two methods for treating the real corrections, sub-
traction (“sub”) and slicing (“sli”), are in good agreement.
Note that they both are implemented in the same Monte
Carlo generator, which, thus, yields identical results for√

sγγ < 170 GeV where the IBA is used. This is the reason
why the “sub” and “sli” numbers are identical in the case
of

√
see = 200 GeV with γ spectrum, where only the range√

sγγ < 170 GeV is relevant in the convolution.
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Fig. 6. Integrated cross section
for γγ → νee

+dū (upper plots)
and relative radiative corrections
(lower plots) including the convolu-
tion over the photon spectrum for
Higgs masses of MH = 130 GeV
and 170 GeV (lower left plot). For√

see > 300 GeV (shown on the
RHS) the “best” curve for MH =
170 GeV practically coincides with
the shown curve for MH = 130 GeV

In Fig. 5 the integrated cross section for γγ → νee
+dū

including radiative corrections is compared with the Born
cross section as a function of the CM energy for monochro-
matic photon beams. The “best” curves correspond to the
O(α)-corrected cross sections. A Higgs boson of MH =
170 GeV produces a sharp peak in the cross section at√

sγγ = 170 GeV, while for larger energies the corrections
are almost independent of the Higgs mass. The relative
corrections δ = σ/σBorn −1 in the four lower plots of Fig. 5
behave roughly like the corrections to on-shell W -pair pro-
duction [15–17]. Close to the W -pair production threshold
the corrections are dominated by the Coulomb singularity.
For higher energies the corrections decrease until they reach
about −7% at 1 TeV. In this region they are dominated by
large logarithms from the Regge and Sudakov domains.

In Fig. 5c we also show the comparison with the IBA
for a Higgs mass of MH = 130 GeV. Since close to the W -
pair production threshold the bulk of the corrections is due
to the Coulomb singularity and since there are no other
pronounced corrections, the agreement between the two
curves is quite good. The very good agreement of the DPA
and the IBA at √

sγγ ∼ 170 GeV both for semi-leptonic
and for hadronic final states (in both cases the difference
is well below 0.1%) is of course accidental. For the leptonic
final state the difference is about 0.7%.

Table 2. Estimates of the TU (5.4) for the O(α)-corrected
cross section of γγ → νee

+dū at various CM energies
√

see

√
see/ GeV 200 240 260 280 300 500 1000

TU 2.0% 1.9% 1.3% 0.8% 0.7% 0.5% 0.5%

As explained in Sect. 3.5, the intrinsic uncertainty of
the IBA is about ∼ ±2%, while the DPA accuracy is up to
� 0.5% where it is applicable. Since the convolution of the
hard γγ cross section, in general, involves both the IBA (in
the low-energy tail) and the DPA (for √

sγγ > 170 GeV),
the uncertainty of our cross-section prediction is in the
range 0.5−2%, depending on the contribution of the IBA
part to the full convolution. Denoting the IBA and DPA
parts of the full cross section as ∆σIBA and ∆σDPA (both
including the corresponding lowest-order contribution, so
that ∆σIBA+∆σDPA = σ), we can estimate the theoretical
uncertainty (TU) of the corrected cross section σ to

TU =
∆σIBA

σ
× 2% +

∆σDPA

σ
× 0.5%. (5.4)

Table 2 illustrates this estimate for a few CM energies
√

see

for γγ → νee
+dū. For

√
see � 230 GeV our prediction

possesses a TU of ∼ 2%, because it is mainly based on
the IBA, but already for

√
see � 300 GeV (500 GeV) the

IBA contribution is widely suppressed so that the DPA
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Fig. 7. Invariant-mass distribu-
tions of the W+ and W − bosons
reconstructed from the νee

+ and dū
pairs in the process γγ → νee

+dū
at

√
s = 500 GeV

uncertainty of � 0.7% (0.5%) sets the precision of our
calculation. We note, however, that the overall uncertainty
of our calculation certainly becomes worse as soon as TeV
energies for √

sγγ are dominating because of the relevance
of high-energy logarithms beyond O(α).

In Fig. 5e the comparison of the full correction with the
IBA is shown for a Higgs mass of MH = 170 GeV. The
IBA includes the Higgs resonance via an effective coupling
and reflects the shape of the resonance quite well.

The cross section including the convolution over the
photon spectrum as a function of CM energy is shown in
Fig. 6 for a Higgs mass of MH = 130 GeV and in the lower
left plot also for MH = 170 GeV. In the upper plots the
integrated cross sections are shown, and in the lower plots
the corrections relative to the Born cross section. Recall
that we use the IBA below √

sγγ = 170 GeV. This means, in
particular, that the Higgs resonance is calculated from the
effective coupling and not from the full DPA in this region.
The interesting structure in the lower left plot reflects the
shape of the photon spectrum convoluted with the Higgs
resonance. Since the Higgs resonance is very narrow, a
sizable contribution is only possible if x1x2see ≈ M2

H where
x1 and x2 are the energy fractions carried by the photons.
The correction is very small at low

√
see where x1 and x2

have to be so large in order to match this condition that
the corresponding spectrum is extremely small. Increasing√

see allows for lower values of x1 and x2. For instance,
for MH = 130 GeV, the rise at

√
see ∼ 180 GeV results

from a region where both x1 and x2 are in the high-energy
tail of the spectrum which is produced by multiple photon
scattering. The peak at

√
see ∼ 200 GeV is caused by events

where one photon comes from the high-energy tail and one
from the dominant peak in the photon spectrum. Finally,
at

√
see � 210 GeV both x1 and x2 originate from the

dominant photon-spectrum peak which causes the steep
rise until

√
see ∼ 220 GeV.

5.3 Distributions

In Fig. 7 we show the invariant-mass distributions for the
νee

+ and dū pairs in the process γγ → νee
+dū, both with

and without convolution over the photon spectrum. The
upper plots show the absolute predictions, and the lower
plots the corrections normalized to the Born predictions.
Since we use √

sγγ = 500 GeV or
√

see = 500 GeV, the
corrections are shifted upwards when including the photon
spectrum, because the effective energy of the photons is
lower (cf. Fig. 5). The shape of the corrections, however, is
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Fig. 8. Angular distribution of the
W − boson reconstructed from the
dū pair in the process γγ → νee

+dū
at

√
s = 500 GeV

hardly changed by the convolution over the photon spec-
trum. As the shape of the corrections determine a possible
shift of the peak of the invariant-mass distribution, it is of
particular importance in the determination of the W -boson
mass. The measurement of the W -boson mass can, e.g., be
used for understanding and calibrating the detector of a
γγ collider.

The distribution in the W -boson production angle is
sensitive to anomalous couplings. In order to set bounds
on these couplings it is mandatory to know radiative cor-
rections, because both anomalous couplings and radiative
corrections typically distort angular distributions. The cor-
responding angular distribution of the dū system, which
is equal within the statistical error to the distribution of
the νee

+ system, is shown in Fig. 8. While the correction
without the photon spectrum is about −9% for W bosons
emitted perpendicular to the beam, the corrections are
rather small when including the photon spectrum. As al-
ready explained above, the cross section is dominated by a
region where the γγ CM energy is smaller. In fact, the rel-
ative correction δ is accidentally small at

√
see ∼ 500 GeV

[cf. Fig. 6d] and might also become larger if other cuts or
event selection procedures are applied.

Figure 9 shows the energy distribution of e+ and d
for the process γγ → νee

+dū. The characteristics of the
Born cross section, especially the influence of the effective
polarization of the photons after Compton backscattering,
were explained in detail in Sect. 6.3 of [3]. The relative
corrections shown in the lower plots amount to a few per
cent. For very low and very high energies, where the Born
cross section is very small, the relative corrections in DPA
are not reliable anymore. In this region the assumption
that doubly-resonant diagrams dominate is not fulfilled.
The angular distributions for e+ and d are shown in Fig. 10.
The shape of the Born cross section and the influence of
the photon spectrum were also explained in Sect. 6.3 of [3].
Similar to the angular distributions of the νee

+ and dū
systems, the corrections are maximal in a region where the
fermions are emitted perpendicular to the beam. However,
after including the photon spectrum, the corrections almost
cancel as can be anticipated from Fig. 6d which shows that

the corrections to the integrated cross section are almost
zero at

√
see ∼ 500 GeV.

Finally, the energy distribution of the photon in the
process γγ → νee

+dū+γ is shown in Fig. 11. The distribu-
tion is dominated by the soft-photon pole at k0 → 0 and
decreases rapidly at higher energies. Comparing the dis-
tributions with and without convolution over the photon
spectrum, the convolution shifts the curve to lower energies,
because the initial-state photons already have less energy.

5.4 Non-collinear-safe observables

As explained in Sect. 4.2, the treatment of collinear sin-
gularities in non-collinear-safe observables deserves some
care. Applying the generalizations of the subtraction and
the slicing methods described above, we now turn to ob-
servables without photon recombination. Apart from that,
the same phase-space cuts are applied as before. In Fig. 12
we show the distributions of the νee

+, νµµ+, and dū pairs
in the processes γγ → νee

+dū, νµµ+dū. With photon re-
combination the leptonic invariant masses of the two pro-
cesses receive the same radiative corrections since the re-
combination guarantees the necessary inclusiveness so that
all mass singularities cancel. If the recombination is not
applied, the distributions change drastically. Note, how-
ever, that the recombination is mainly a rearrangement
of events, and omitting the recombination affects the in-
tegrated cross section by less than 0.5%. With decreasing
invariant masses the relative corrections rise, while they
are smaller at large invariant masses. The reason is that
without recombination final-state radiation (which is en-
hanced by mass logarithms) reduces the invariant mass of
the reconstructed W boson, thereby shifting events from
the dominating resonant region to lower invariant-mass val-
ues. The recombination brings most of these events back to
the resonance region, because it prevents momentum loss
from final-state radiation. The LHS of Fig. 12 also shows a
hierarchy in the mass effects of the outgoing leptons as the
slope for the νee

+ pair is much steeper than the slope for
the νµµ+ pair due to the smaller mass of e+. The plot on the
RHS shows that the corrections for the dū pair are not as
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Fig. 9. Energy distribution of e+

and d in the process γγ → νee
+dū

at
√

s = 500 GeV

large as for the νµµ+ pair on the LHS, because the remain-
ing mass terms behave like Q2

f lnmf , where Qf denotes
the charge of the fermion f . We also note that the correc-
tions are smallest in the case with photon recombination
because of the cancellation of all mass singularities.

The photon recombination also affects the energy dis-
tributions of the fermions. Figure 13 shows this distribu-
tion for e+ and µ+ in the processes γγ → νee

+dū and
γγ → νµµ+dū with and without recombination. In the
former case the curves coincide, as explained above. The
recombination attributes the photon to a fermion and, thus,
shifts events to higher energies of the fermion. The mass-
singular effect, which appears without recombination, is
again larger for e+ than for µ+.

The effect of the photon recombination on the photon-
energy spectrum is shown in Fig. 11. Without recombina-
tion the distribution is shifted to higher photon energies
because the recombination transfers events to the bin with
zero photon energy. The difference is again bigger for the
process γγ → νee

+dū than for γγ → νµµ+dū, since the
mass-singular logarithms of e+ are larger.

6 Summary

In this paper we have described a calculation of the O(α)
electroweak radiative corrections to γγ → WW → 4f
in the electroweak standard model in the double-pole ap-
proximation (DPA). Technically, we follow the strategy of
the RacoonWW Monte Carlo event generator for the corre-
sponding e+e− reaction.Thismeans, virtual corrections are
treated in DPA and are decomposed into factorizable and
non-factorizable contributions, while real-photonic correc-
tions are based on complete lowest-order matrix elements
for γγ → 4fγ. The combination of virtual and real cor-
rections is done in two different ways: by using the dipole
subtraction method or by applying phase-space slicing.

A detailed survey of numerical results for the O(α) cor-
rections has been given, comprising results on integrated
cross sections as well as angular, energy, and W -invariant-
mass distributions. In the W -pair threshold region the cor-
rections are dominated by the Coulomb singularity and are,
thus, positive and of the order of a few per cent. For increas-
ing γγ scattering energies the corrections become more and
more negative and reach about −10% in the TeV range for
integrated cross sections. For large scattering angles, where
the Born cross section is relatively small, the impact of the
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duction angles of e+ and d in the pro-
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corrections is usually larger. Since the convolution with
realistic photon beam spectra effectively reduces the hard
scattering energy, the size of the corrections is usually some-
what reduced compared to the situation with monochro-
matic photon beams. Typically, collinear-safe observables
(i.e. where mass-singular logarithms cancel due to sufficient
inclusiveness) receive corrections of a few per cent for en-
ergies of the e−e− system before Compton backscattering

up to 1 TeV. As expected, non-collinear-safe observables
receive very large corrections (tens of per cent) because of
the existence of logarithmic mass singularities.

The radiative corrections are implemented in a Monte
Carlo generator called Coffer γγ, which optionally includes
anomalous triple and quartic gauge-boson couplings in ad-
dition and performs a convolution over realistic spectra of
the photon beams. The construction of this generator and
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lowest-order results obtained with it have already been de-
scribed in a previous publication [3]. At present, Coffer γγ
is the only event generator that includes both the decays
of the W bosons and radiative corrections, thereby defin-
ing the state of the art in the description of the processes
γγ → WW → 4f(+γ).

Appendix A: Transformation of the
coefficient functions Fj

In this appendix we describe the transformation of the co-
efficient functions Fj for the factorizable virtual corrections
(3.9) that transforms all Fj into the helicity amplitudes of
the on-shell process γγ → WW .

The 36 SME MγγW+W −
j of [16], which fix the coef-

ficient functions Fj by (3.6), are defined for 36 different
helicity configurations which can be enumerated with a
single index l,

MγγW+W −
j (λ1, λ2; λ+, λ−) ≡ Mjl,

l = (λ1, λ2, λ+, λ−), (A.1)

where j, l = 1, . . . , 36. The 36×36 matrix M is explicitly ob-
tained by inserting momenta and polarization vectors into
the 36 independent SME MγγW+W −

j of the 83 structures
defined in (5)–(9) of [16].

If we transform the Fj according to

F̂l =
36∑

j=1

FjMjl, (A.2)

the function F̂l is the helicity amplitude for the on-shell
process γγ → WW corresponding to the helicity config-
uration l = (λ1, λ2, λ+, λ−). As such, it can be well ap-
proximated by the generalized Fourier series described in
Sect. 3.2.2. It is important to notice that in [16] the scat-
tering plane spanned by the beam axes and the produced
W bosons was rotated into the (x1, x3)-plane, so that the
SME MγγW+W −

j depend only on s and cos θ, or equiva-
lently on s and t̂. Since, thus, the matrix M is a function
of s and t̂, also the new functions F̂l depend only on s and
t̂, but not on the azimuthal angle of the scattering plane
or other on kinematical variables. According to (A.2), the
SME Mj transform as

M̂l =
36∑

j=1

(M−1)ljMj , (A.3)

where M−1 denotes the inverse matrix of M . By construc-
tion, the transformation decouples the different helicity
channels of γγ → WW . When including the W decays in
the SME, as done in (A.3), this decoupling is somewhat
disguised for the W -boson polarizations, but still valid for
the photon helicities. This means that the new SME M̂l

consist of four subsets, each of which contributes only for
one of the four different polarization combinations (λ1, λ2)
of the photons. In practice, we have evaluated and simpli-
fied the matrix M and the new SME M̂l analytically as
much as possible.
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Appendix B: Dipole subtraction
for non-collinear-safe photonic final-state
radiation

In Sect. 4.2.2 we have collected the relevant formulas for
the generalization of the dipole subtraction method to non-
collinear-safe observables. Here we describe the details of
their derivation. Specifically, we focus on the situation of
light charged particles in the final state only; the more
general case of massive particles and of charged particles in
the initial state will be worked out elsewhere [36]. Although
not made explicit in the main text, we keep track of the
polarizations of the outgoing particles.

Subtraction of singularities. Generically the schematic
form of the subtraction procedure to integrate the squared
matrix element

∑
λγ

|M1|2 (summed over the photon po-
larizations λγ) for real photon radiation over the (N + 1)-
particle phase space dΦ1 reads

∫
dΦ1

∑
λγ

|M1|2 =
∫

dΦ1


∑

λγ

|M1|2 − |Msub|2



+
∫

dΦ̃0 ⊗
(∫

[dk] |Msub|2
)

, (B.1)

where dΦ̃0 is a phase-space element of the corresponding
non-radiative process and [dk] includes the photonic phase
space that leads to the soft and collinear singularities. The
sign “⊗” indicates that this factorization, in general, is
not an ordinary product, but may contain also summa-
tions and convolutions. The two contributions involving
the subtraction function |Msub|2 have to cancel each other,
however, they will be evaluated separately. The subtraction
function is constructed in such a way that the difference(∑

λγ
|M1|2 − |Msub|2

)
can be safely integrated over dΦ1

numerically and that the singular integration of |Msub|2
over [dk] can be carried out analytically, followed by a safe
numerical integration over dΦ̃0.

In the dipole subtraction formalism, the subtraction
function is given by [22,23]

|Msub(Φ1)|2 (B.2)

= −
∑
i �=j

QiσiQjσje
2g

(sub)
ij,τ (pi, pj , k)

∣∣∣M0

(
Φ̃0,ij ; τκi

)∣∣∣2 ,

where the sum runs over all emitter–spectator pairs ij,
which are called dipoles. Recall that both i and j are final-
state particles in our case. The relative charges are denoted
Qf (f = i, j), and the sign factors σf = ±1 correspond
to the charge flow (σf = +1 for anti-fermions, σf = −1
for fermions). The summation over τ = ±1 accounts for a
possible flip in the helicity κi of the emitter i. The singular
behaviour of the subtraction function is contained in the
radiator functions g

(sub)
ij,τ (pi, pj , k), which depend on the

emitter, spectator, and photon momenta pi, pj , and k, re-
spectively. In the limit of small fermionmasses the functions

g
(sub)
ij,τ are related to the function g

(sub)
ij of (4.7) for the un-

polarized case by g
(sub)
ij,+ = g

(sub)
ij , g

(sub)
ij,− = 0. The squared

lowest-order matrix element |M0|2 of the corresponding
non-radiative process enters the subtraction function with
modified emitter and spectator momenta p̃i, p̃j , as defined
in (4.9). The momenta are related by pi +pj +k = p̃i + p̃j ,
where all the other particle momenta pk and p̃k, entering
|M1|2 and |M0|2, respectively, are the same, p̃k = pk.
The modified momenta are constructed in such a way that
p̃i → pi + k in the collinear limit (pik → 0). Since we
deal with light external fermions only, we set all masses
mf of external fermions to zero whenever possible. This
means that mf = 0 can be consistently used in the integral∫

dΦ1

(∑
λγ

|M1|2 − |Msub|2
)
, but that the re-added con-

tribution
∫

[dk] |Msub|2 in general contains mass-singular
terms of the form α lnmf .

In collinear-safe observables, and only those are con-
sidered for light fermions in [22, 23], a collinear fermion–
photon system is treated as one quasi-particle, i.e., in the
limit where a charged fermion i and γ become collinear
only the sum pi + k enters the procedures of implement-
ing phase-space selection cuts or of sorting an event into
a histogram bin of a differential distribution. Technically
this level of inclusiveness is reached by photon recombina-
tion, a procedure that assigns the photon to the nearest
charged particle if it is close enough to it. Of course, dif-
ferent variants for such an algorithm are possible, similar
to jet algorithms in QCD. The recombination guarantees
that for each photon radiation cone around a charged par-
ticle i the energy fraction of (4.14), zi = p0

i /(p0
i + k0), is

fully integrated over. According to the KLN theorem [33],
no mass singularity connected with final-state radiation
remains. Collinear safety facilitates the actual application
of the subtraction procedure as indicated in (B.1). In this
case the events resulting from the contributions of |Msub|2
can be consistently regarded as N -particle final states of
the non-radiative process with particle momenta as going
into

∣∣M0
(
Φ̃0,ij

)∣∣2, i.e. the emitter and spectator momenta
are given by p̃i, p̃j , respectively. Owing to p̃i → pi+k in the
collinear limits, the difference

(∑
λγ

|M1|2 −|Msub|2) can
be integrated over all collinear regions, because all events
that differ only in the value of zi enter cuts or histograms in
the same way. The implicit full integration over all zi in the
collinear cones, on the other hand, implies that in the ana-
lytical integration of |Msub|2 over [dk] the zi-integrations
can be carried out over the whole zi range.

Innon-collinear-safe observables, not all photonswithin
arbitrarily narrow collinear cones around outgoing charged
particles are treated inclusively. For a fixed cone axis the in-
tegration over the corresponding variable zi is constrained
by a phase-space cut or by the boundary of a histogram
bin. Consequently, mass-singular contributions of the form
α lnmi remain in the integral. Technically this means that
the information on the variables zi has to be exploited
in the subtraction procedure of (B.1). The variable that
takes over the role of zi in the individual dipole contribu-
tions in |Msub|2 is zij , as defined in (4.8), because in the
collinear limit it behaves as zij → zi. Thus, the integral
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∫
dΦ1

(∑
λγ

|M1|2 − |Msub|2
)

can be performed over the

whole phase space if the events associated with |Msub|2 are
treated as (N +1)-particle events with momenta pi = zij p̃i,
pj = p̃j , and k = (1 − zij)p̃i. This modification, in turn,
requires a generalization in the evaluation of the second
subtraction term on the RHS of (B.1), because now the
integral over zij implicitly contained in [dk] depends on
the cuts that define the observable.

Integration of singular contributions. For a final-state
emitter i and a final-state spectator j with masses mi and
mj the integral of g(sub)

ij,τ (pi, pj , k) over [dk] is proportional to

G
(sub)
ij,τ (P 2

ij) (B.3)

=
P̄ 4

ij

2
√

λij

∫ y2

y1

dyij (1 − yij)
∫ z2(yij)

z1(yij)
dzij g

(sub)
ij,τ (pi, pj , k),

where P 2
ij = (p̃i+p̃j)2 and the definitions of Sect. 4.1 of [22]

are used. There the results for G
(sub)
ij,τ (P 2

ij) with generic or
light masses are given in (4.10) and (3.7), respectively. In
order to leave the integration over zij open, the order of the
two integrations has to be interchanged, and the integral
solely taken over yij is needed,

Ḡ(sub)
ij,τ (P 2

ij , zij) (B.4)

=
P̄ 4

ij

2
√

λij

∫ y2(zij)

y1(zij)
dyij (1 − yij) g

(sub)
ij,τ (pi, pj , k).

Note that the function Ḡ(sub)
ij,τ (P 2

ij , z) is not needed for finite
photon mass λ, because the soft singularity appearing at
z → 1 can be split off by employing a [. . .]+ prescription
in the variable z,

Ḡ(sub)
ij,τ (P 2

ij , z) = G
(sub)
ij,τ (P 2

ij)δ(1 − z)

+
[
Ḡ(sub)

ij,τ (P 2
ij , z)

]
+

. (B.5)

This procedure shifts the soft singularity into the quantity
G

(sub)
ij,τ (P 2

ij), which is already known from [22]. Moreover,
the generalization to non-collinear-safe integrals simply re-
duces to the extra term

[
Ḡ(sub)

ij,τ (P 2
ij , z)

]
+
, which cancels out

for collinear-safe integrals where the full z-integration is
carried out.

In the limit mi → 0 and for mj = λ = 0 the boundary
of the yij integration is given by

y1(z) =
m2

i (1 − z)
P 2

ijz
, y2(z) = 1, (B.6)

and the functions relevant for the integrand g
(sub)
ij,τ behave

as (see Sect. 4.1 of [22])

pik =
P 2

ij

2
yij , Rij(y) = 1 − y, rij(y) = 1. (B.7)

The evaluation of (B.4) becomes very simple and yields

Ḡ(sub)
ij,+ (P 2

ij , z)

= Pff (z)

[
ln

(
P 2

ijz

m2
i

)
− 1

]
+ (1 + z) ln(1 − z),

Ḡ(sub)
ij,− (P 2

ij , z) = 1 − z, (B.8)

where Pff (y) is the splitting function of (4.16). Equa-
tion (B.8) is correct up to terms suppressed by factors of
mi. For completeness, we repeat the form of the full integral
G

(sub)
ij,τ (P 2

ij) in the case of light masses,

G
(sub)
ij,+ (P 2

ij) = L(P 2
ij , m

2
i ) − π2

3
+ 1,

G
(sub)
ij,− (P 2

ij) =
1
2

,

(B.9)

with the auxiliary function L of (4.13). The results for the
functions Ḡ(sub)

ij and G
(sub)
ij for the unpolarized case, as

given in (4.18) and (4.12), are obtained by summing over
the variable τ = ±1 which accounts for the spin flip,

Ḡ(sub)
ij = Ḡ(sub)

ij,+ + Ḡ(sub)
ij,− ,

G
(sub)
ij = G

(sub)
ij,+ + G

(sub)
ij,− .

(B.10)

Finally, we give the explicit form of the ij contribution
|Msub,ij(Φ1)|2 to the phase-space integral of the subtrac-
tion function,∫

dΦ1 |Msub,ij(Φ1)|2

= − α

2π
QiσiQjσj

∫
dΦ̃0,ij |M0(p̃i, p̃j ; τκi)|2

×
{

G
(sub)
ij,τ (P 2

ij)Θ
(
Φ̃0,ij

)
+

∫ 1

0
dz

[
Ḡ(sub)

ij,τ (P 2
ij , z)

]
+

×Θ (pi = zp̃i, k = (1 − z)p̃i, {p̃k �=i})
}

. (B.11)

The arguments of the step functions Θ(. . .) indicate on
which momenta phase-space cuts are imposed.
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